Characterization of cytokinin and adenine transport in Arabidopsis cell cultures.

نویسندگان

  • Anna Cedzich
  • Harald Stransky
  • Burkhard Schulz
  • Wolf B Frommer
چکیده

Cytokinins are distributed through the vascular system and trigger responses of target cells via receptor-mediated signal transduction. Perception and transduction of the signal can occur at the plasma membrane or in the cytosol. The signal is terminated by the action of extra- or intracellular cytokinin oxidases. While radiotracer studies have been used to study transport and metabolism of cytokinins in plants, little is known about the kinetic properties of cytokinin transport. To provide a reference dataset, radiolabeled trans-zeatin (tZ) was used for uptake studies in Arabidopsis (Arabidopsis thaliana) cell culture. Uptake kinetics of tZ are multiphasic, indicating the presence of both low- and high-affinity transport systems. The protonophore carbonyl cyanide m-chlorophenylhydrazone is an effective inhibitor of cytokinin uptake, consistent with H(+)-mediated uptake. Other physiological cytokinins, such as isopentenyl adenine and benzylaminopurine, are effective competitors of tZ uptake, whereas allantoin has no inhibitory effect. Adenine competes for zeatin uptake, indicating that the degradation product of cytokinin oxidases is transported by the same systems. Comparison of adenine and tZ uptake in Arabidopsis seedlings reveals similar uptake kinetics. Kinetic properties, as well as substrate specificity determined in cell cultures, are compatible with the hypothesis that members of the plant-specific purine permease family play a role in adenine transport for scavenging extracellular adenine and may, in addition, be involved in low-affinity cytokinin uptake.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural basis for cytokinin recognition by Arabidopsis thaliana histidine kinase 4

Cytokinins are classic hormones that orchestrate plant growth and development and the integrity of stem cell populations. Cytokinin receptors are eukaryotic sensor histidine kinases that are activated by both naturally occurring adenine-type cytokinins and urea-based synthetic compounds. Crystal structures of the Arabidopsis thaliana histidine kinase 4 sensor domain in complex with different cy...

متن کامل

Cytokinin activation of Arabidopsis cell division through a D-type cyclin.

Cytokinins are plant hormones that regulate plant cell division. The D-type cyclin CycD3 was found to be elevated in a mutant of Arabidopsis with a high level of cytokinin and to be rapidly induced by cytokinin application in both cell cultures and whole plants. Constitutive expression of CycD3 in transgenic plants allowed induction and maintenance of cell division in the absence of exogenous c...

متن کامل

A transcriptome-based characterization of habituation in plant tissue culture.

For the last 50 years, scientists have recognized that varying ratios of the plant hormones cytokinin and auxin induce plant cells to form particular tissues: undifferentiated calli, shoot structures, root structures, or a whole plant. Proliferation of undifferentiated callus tissue, greening, and the formation of shoot structures are all cytokinin-dependent processes. Habituation refers to a n...

متن کامل

The Arabidopsis AHK4 histidine kinase is a cytokinin-binding receptor that transduces cytokinin signals across the membrane.

Common histidine-to-aspartate (His-->Asp) phosphorelay is a paradigm of signal transduction in both prokaryotes and eukaryotes for the propagation of certain environmental stimuli, in which histidine (His)-kinases play central roles as sensors for environmental signals. For the higher plant, Arabidopsis thaliana, it was recently suggested that the His-kinase (AHK4 / CRE1 / WOL) is a sensor for ...

متن کامل

Cytokinin acts through the auxin influx carrier AUX1 to regulate cell elongation in the root.

Hormonal interactions are crucial for plant development. In Arabidopsis, cytokinins inhibit root growth through effects on cell proliferation and cell elongation. Here, we define key mechanistic elements in a regulatory network by which cytokinin inhibits root cell elongation in concert with the hormones auxin and ethylene. The auxin importer AUX1 functions as a positive regulator of cytokinin ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 148 4  شماره 

صفحات  -

تاریخ انتشار 2008